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ABSTRACT
In this present study, we have introduced a novel three-parameter distribution
(NTPD) designed for modeling lifetime data, showcasing its remarkable performance
in reliability and survival analysis. We have presented expressions for a range of sta-
tistical functions, including the probability density function, distribution function,
survival function, quantile function, hazard rate function, reversed hazard rate func-
tion, cumulative hazard rate function, skewness, and kurtosis. Visual representations
of the probability density and hazard rate curves have also been provided. To assess
the suitability and effectiveness of our proposed model, we employed a COVID-19
second wave dataset from Nepal. We estimated the model parameters using three
different techniques: maximum likelihood, least squares, and Cramer’s-von Mises.
To confirm the model’s validity, we employed a range of statistical criteria, such as
Akaike’s Information Criterion, Bayesian Information Criterion, Corrected Akaike’s
Information Criterion, and Hannan-Quinn Information Criterion. Additionally, P-P
and Q-Q plots were used for validation purposes. To assess how well the data fits,
we performed the Kolmogorov-Smirnov, Anderson-Darling, and Cramer-von Mises
tests. These tests were carried out to determine the adequacy of the fit for our data.
Our empirical findings demonstrate that, when compared to alternative lifetime dis-
tributions, the suggested distribution exhibits superior fitting and greater flexibility
for lifetime data analysis. The utilization of the R programming language facilitated
robust and insightful data analysis, leading to valuable insights.

KEYWORDS
Bayesian Information Criterion, COVID-19, Goodness of fit, Maximum Likelihood
Estimation, novel three-parameter distribution, second wave, survival function.

1. Introduction

Lifetime distribution, also known as survival distribution or failure time distribution,
plays a pivotal role in various fields such as reliability engineering, survival analysis,
biology, medicine, finance, economics, social sciences, and actuarial science. It models
the probability distribution of the time until an event of interest occurs, whether it
is the failure of a mechanical component, the survival time of patients, or the lifes-
pan of a product. The analysis of lifetime distributions provides valuable insights into
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the reliability and durability of systems, allowing for informed decision-making and
risk assessment. Understanding the characteristics and parameters of lifetime distri-
butions is essential for predicting and managing events that occur over time. Studying
continuous probability distributions, such as the exponential, Cauchy, and Weibull
distributions, is a common practice in statistical literature for the analysis of lifetime
data. These probability distributions play a crucial role in understanding and mod-
eling the variability in lifetimes, making them essential tools in fields like reliability
engineering, survival analysis, and actuarial science. By examining these distributions,
researchers and analysts can gain valuable insights into the behavior of data points over
time, allowing them to make informed decisions and predictions in various real-world
scenarios. In recent years, considerable attention from researchers has been directed
towards the exponential distribution due to its efficacy in modelling lifetime data. Its
favourable attributes stem from closed-form solutions available for numerous survival
analyses. However, while the exponential distribution is often justifiable under the as-
sumption of a constant failure rate, real-world failure rates tend to exhibit variability.
Consequently, relying on the exponential lifetime model in a random manner can be
both inadequate and unrealistic. More recently, novel classes of models have emerged
by building upon modifications of established classical probability models, as demon-
strated by (Marshall & Olkin ,2007). Contemporary efforts have been dedicated to
devising fresh distributions that expand upon existing ones, thereby enhancing the
flexibility of data modelling practices. Through the inclusion of supplementary crite-
ria, various techniques can be employed to extend the scope of existing established
distributions, resulting in the creation of broader families of models. This trend has
given rise to multiple categories within statistical literature, introducing one or more
parameters to generate innovative models, as illustrated by the works of (Pham & Lai
,2007)and (Rinne,2009).Some of the well-known life time models found in the liter-
ature are Weibull distribution (Weibull, 1951), Lindley distribution (Lindley, 1958),
Inverse Weibull (Keller et al. ,1982), Exponentiated Weibull (Mudholkar et al., 1995),
Exponential power (Srivastava & Kumar, 2011), A new two-parameter lifetime distri-
bution (Alizadeh et al. ,2019), Logistic-exponential power (Joshi et al.,2020), A Two
Parameter New Distribution (Chaudhary & Kumar,2020), A new three parameter
lifetime model(Muhammad et al.,2021), Inverse exponentiated odd Lomax exponen-
tial distribution(Chaudhary et al.,2022),Modified Upside Down Bathtub-Shaped Haz-
ard Function Distribution(Chaudhary et al.,2023),and the inverse exponential power
distribution (Chaudhary et al., 2023). This paper presents a new class of life time
distributions called a novel three-parameter distribution (NTPD) for lifetime data,
demonstrating its superior performance in reliability/survival analysis. The article’s
primary goal is to propose a more adaptable model that achieves improved fitting
accuracy for lifetime datasets. The following structure is used to present the various
sections of this study. In Section 2, we will introduce the novel three-parameter distri-
bution (NTPD) while elucidating its mathematical and statistical properties. Moving
on to Section 3, we will delve deeply into the estimation techniques, which will in-
clude discussions on least-squares (LSE), Cramer-Von-Mises (CVME), and maximum
likelihood (MLE). In Section 4, our focus will be on providing model parameter esti-
mates, utilizing data from the COVID-19 second wave in Nepal. Furthermore, we will
present examples of the different criteria employed to assess the goodness of fit of the
proposed model. In concluding section 5, this study has strived to contribute valuable
insights to the field of statistical analysis and modeling. We hope that the information
presented in this paper serves as a valuable resource for researchers, practitioners, and
policymakers alike.
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2. Model Analysis

In this research, we have created a new life time distributions called a novel three-
parameter distribution (NTPD) for lifetime data. The Cumulative distribution func-
tion(cdf) of NTPD distribution is given by

F (x, α, β, λ) =

[(
1 +

β

x

)
exp

(
βe−αx

x

)]−λ

;x ≥ 0, (α, β, λ) > 0 (2.1)

The probability density function (PDF) corresponding to the newly proposed model
is defined as follows:
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(2.2)

In the following section, we delve into different characteristics of the suggested model.
These characteristics encompass the survival function, hazard rate function, reversed
hazard rate function, cumulative hazard rate function, quantile function, and its be-
havior as it approaches its asymptotic limit.

2.1. Survival function

The survival function, denoted as S(x), represents the probability of enduring an event
beyond a certain point x. It serves as the complement to the cumulative distribution
function (CDF). Equation (2.3) provides the survival function for the proposed model.

S(x) = 1−
[(

1 +
β

x

)
exp

(
βe−αx

x

)]−λ

;x ≥ 0, (α, β, λ) > 0 (2.3)

2.2. Hazard rate function

The hazard rate function, often symbolized as h(x), quantifies how quickly failures
happen at a particular point in time. It’s determined by dividing the probability
density function (pdf) by the survival function S(x) of the distribution. In the proposed
model, equation (2.4) offers a precise definition for h(x).

h(x) =
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(2.4)

Figure 1 presents two panels illustrating key aspects of the probability density curve
and hazard rate curves for various parameter values. The left panel showcases the
probability density curve, highlighting its variation as the parameters change. This
variability signifies the model’s adaptability to different types of datasets. Meanwhile,
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the right panel of Figure 1 displays hazard rate curves associated with specific param-
eter sets. These hazard rate curves exhibit patterns of both increasing and decreasing
trends, as well as the distinctive inverted bathtub shape.
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Figure 1. Probability density curve and hazard rate curve.

2.3. Reversed hazard rate function

The equation (2.5) defines the reversed hazard rate, denoted as hrex(x), for this model.
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2.4. Cumulative hazard rate function

The equation (2.6) provides the cumulative hazard rate function, H(x), for the pro-
posed model.

H(x) = − lnS(x) = − ln

{
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}
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(2.6)

2.5. Quantile function

The quantile function, an alternative to the cumulative distribution function (CDF),
aids in the descriptive analysis of the model. It is defined for NTPD by equation (2.7).

log
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β
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)
+

(
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x

)
+

log p

λ
= 0; 0 ≤ p ≤ 1 (2.7)

2.6. Asymptotic behavior

We can examine the density function’s behavior as it approaches zero and infinity by
ensuring thatlim

x→0
f(x) = lim

x→∞
f(x). If the model follows these asymptotic properties,
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it will have a mode. This evaluation requires us to analyze the limits at both ends.
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2.7. Skewness and Kurtosis

In this research, we employed Bowley’s skewness coefficient, calculated using quantiles,
as introduced by (Al-saiary et al., 2019), which is

SK (B) =
Q (3/4)+Q (1/4) -2*Q (1/2)

Q(3/4)-Q(1/2)

The Octiles Kurtosis coefficient as presented in (Moors, 1988) is

Ku={Q(0.375)-Q(0.625)-Q (0.125)+Q (0.875)}{Q(0.75)-Q(0.25)}−1

3. Methods for Estimation of model constants

In the realm of literature, multiple techniques exist for estimating the parameters
(constants) of the model. In this research, we employed three distinct approaches:
maximum likelihood estimation, the least squares estimation method, and the Cramer-
Von Mises estimation method.

3.1. Maximum Likelihood Estimation (MLE)

This estimation method depends on optimizing the model’s log likelihood function.
Imagine we have a random sample of ’n’ items from MATE, which we’ll represent as
.In this situation; the log likelihood function can be formulated as follows:

l(α, λ, β|x) = n log(λβ)− 2

n∑
i=1

log xi +
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i=1

log
[
1 + e−αxi(1 + β/xi)(1 + αxi)

]

+β

n∑
i=1

xi
−1e−αxi +

n∑
i=1

log (1 + β/xi) +

n∑
i=1

(βxi
−1e−αxi)

−(λ+1)

(3.1)

Once we have determined the derivatives of equation (3.1) with respect to α, β, and λ,
we can move forward to calculate the first-order and second-order partial derivatives
of the log-likelihood function. These derivatives are crucial for analyzing the behavior
and properties of the likelihood function in our statistical or mathematical context.
To estimate the parameters of the proposed model, we set the first-order derivatives
to zero and solve for them. However, it’s worth noting that solving these first-order
partial derivatives analytically might not be practical, and we might have to resort to
using computer programming to solve the nonlinear equations.
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3.2. Estimation using Least-Square (LSE)

We begin with a series of arranged random variables, labeled as

X(1) < X(2) < . . . < X(n)

. Next, we extract a random sample

{X1, X2, . . . , Xn}

of size n from a distribution described by the function F(.). To establish a function A,
we utilize the cumulative distribution function (CDF) of ordered statistics, represented
as

F (X(i))

,as outlined in equation (3.2).

A (x;α, λ, β) =

n∑
i=1

[
F (X(i))−

i

n+ 1

]2
(3.2)

To obtain the parameters of the proposed NTPD model, we can minimize function
(3.2) with respect to the parameters and then solve for them.

3.3. Cramer-Von-Mises (CVM) method

We can estimate the parameters α,λ, and β by minimizing the function (3.3) through
the utilization of this approach.

Z (X;α, λ, β) =
1

12n
+

n∑
i=1

[
F (xi:n|λ, β)−

2i− 1

2n

]2
(3.3)

To find both the first and second-order partial derivatives of function Z, we perform
differentiation on equation (3.3) with respect to α,λ and β. Solving these nonlinear
equations enables us to determine the estimated parameters.

4. Real Data Analysis

To evaluate the model’s suitability, we utilized it with real data from the second wave of
COVID-19 in Nepal. COVID-19, a global pandemic, hit Nepal, leading to severe cases
of acute respiratory syndrome. This pandemic has seen multiple waves worldwide. In
Nepal, the second wave of COVID-19 syndrome became prominently apparent in the
first week of April,2021. Unfortunately, Nepal experienced a high mortality rate during
this second wave. At the start of April, there was just one recorded death, but this
number steadily rose. By May 14th, the daily death toll in Nepal had reached 203.
As a result, this research aimed to forecast the fatalities occurring in Nepal during
the second wave, spanning from April 1st to May 14th. The dataset, comprising a
minimum of one daily reported death throughout this timeframe, was provided by

6



A Novel Three-Parameter Distribution for lifetime data with application to COVID-19...  79ASIAN JOURNAL OF STATISTICS AND APPLICATIONS Arun Kumar Chaudhary a
& Lal Babu Sah b

(Ministry of Health and Population of the Government of Nepal, 2021). 1, 1, 4, 2, 1,
1, 13, 5, 3, 5, 4, 5, 8, 8, 11, 10, 5, 5, 14, 28, 12, 18, 17, 35, 33, 19, 27, 37, 55, 58, 54,
50,53, 88, 139, 225, 168, 214, 203. Parameters are estimated using optim () function
of R language programming (R Core Team, 2023). Figure 2 displays the boxplot in

Table 1. Summary statistics of the data.

Min. Q1 Q2 Q3 Mean Max. S.D. Skewness Kurtosis

1.00 5.00 14.00 51.50 42.03 225 61.954 1.9478 5.5907

the left panel and the TTT plot in the right panel.
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Figure 2. Boxplot and TTT plot of the data.

Parameters estimated using MLE is mentioned in table 2. Table 2 also contains the
standard error of estimates of the parameters. Figure 3 exhibits both the histogram

Table 2. Parameters estimated
values using MLE and correspond-
ing standard error (SE) of estimates

Parameters MLE SE

α 3.2857 0.7583
β 19.1460 11.9867
λ 0.8736 0.3192

and the corresponding fitted density plot of the model. The right panel of Figure
3 showcases the comparison between the empirical cumulative distribution function
(ecdf) and the fitted cdf of the proposed model.

To assess the reliability of the estimated parameter, two additional methods, namely
the Least Square Estimation (LSE) and Cramer’s von Mises Estimation (CVM), are
employed. These methods help verify the consistency and accuracy of the estimated
parameter, providing a robust evaluation of its reliability. Parameters estimated using
these methods is very close.

Table 4 presents a comparison of estimation methods using four different informa-
tion criteria values and negative log-likelihood values. The analysis reveals that the
Maximum Likelihood Estimation (MLE) method exhibits the lowest information crite-
ria values when compared to the other two methods. Consequently, we can confidently
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Table 3. Estimated parameters using MLE,
LSE and ,CVM.

Parameters MLE LSE CVM

α 3.2857 4.4606 4.1056
β 19.1460 18.5512 15.9688
λ 0.8736 0.8701 0.9603

assert that the MLE method provides a superior fit to the COVID-19 second wave
real dataset when compared to the alternative methods.

Table 4. Information criteria for different methods of estimation.

Methods LL AIC BIC CAIC HQIC

MLE -176.3767 358.7535 363.7442 359.4392 360.5441
CVM -176.9073 359.8147 364.8054 360.5004 361.6053
LSE -177.2643 360.5285 365.5192 361.2142 362.3191

Similarly, Table 5 represents the test statistics and corresponding p values for all
methods of estimation

Table 5. Goodness of fit statistics and p values for different methods
of estimation.

Methods KS(p-value) W(p-value) A2(p-value)

MLE 0.0807(0.9615) 0.3324 (0.9115) 0.0330(0.9672)
CVM 0.0809(0.9604) 0.2911(0.9444) 0.0293(0.9796)
LSE 0.0737(0.9840) 0.3150(0.9260) 0.0319(0.9743)

To assess the validity of the model, we have also generated P-P and Q-Q plots for
the suggested model, which are displayed in Figure 4. These plots provide valuable
insights into the suggested model’s performance, helping us evaluate its accuracy and
reliability. In Figure 4, we can observe the P-P plot and Q-Q plot, which offer a visual
representation of how well the model aligns with the expected distribution.

4.1. Model Comparison

In this study, the proposed model is evaluated by comparing it with five other mod-
els that have been documented in existing literature. The five lifetime models under
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Figure 4. P-P and Q-Q plot

consideration include the Exponentiated Marshall-Olkin Exponential (EMOE) distri-
bution as presented by (Tharu et al., 2021), the Generalized Inverted Generalized
Exponential (GIGE) distribution suggested by (Oguntunde et al., 2015), the Expo-
nentiated Half Logistic Exponential (EHLE) distribution introduced by (Almarashi et
al., 2018), the Exponentiated Generalized Inverted Exponential (EGIE) distribution
created by (Oguntunde et al.,2014), and the Exponentiated Inverse Rayleigh (EIR)
distribution presented by (Rao et al., 2019). In this comparative analysis, we seek
to assess how the proposed model stacks up against these well-established models,
considering various performance metrics and criteria. This evaluation will contribute
valuable insights to the field, helping us better understand the strengths and weak-
nesses of each model in modeling lifetime data and informing potential applications
in practical scenarios. Ultimately, the findings of this study will contribute to the on-
going dialogue surrounding the selection and application of lifetime models, offering
valuable guidance to researchers, analysts, and professionals working in fields where
the modeling of survival and failure times is crucial. Table 6 provides the estimated
parameters for all these models, along with the standard error of estimates, using the
given COVID- 19 second wave real dataset in Nepal.

Table 6. Estimated parameters of competing models.

Methods α β λ θ γ σ

NTPD 3.2858 19.1915 0.8737 - - -
EMOE 0.0073 0.0960 - 1.1669 - -
EGIE 0.6767 24.7515 0.0582 - - -
GIGE 0.5785 - 1.6003 - 2.2031 -
EHLE 0.0102 0.4877 1.8705 - - -
EIR 0.2142 - - - - 1.5483

To compare the models, we have calculated various information criteria values for all
of them and presented the results in Table 7. The proposed model exhibits the lowest
information criteria values, suggesting that it is a better fit for the dataset compared to
the other competing models. This superiority in information criteria values implies that
the suggested model offers a more accurate representation of the data, outperforming
the alternative models under consideration. These results underscore the robustness
and effectiveness of the proposed model in capturing the underlying patterns and
relationships within the dataset.

Figure 5 depicts two panels. The left panel shows a histogram compared to the
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Table 7. Information criteria values for NTPD and
competing models.

Methods LL AIC BIC CAIC

NTPD -176.377 358.754 363.744 359.439
EMOE -178.160 362.319 367.310 367.995
EGIE -180.107 366.213 371.206 367.899
GIGE -181.476 368.952 373.943 369.638
EHLE -182.609 371.218 376.209 371.905
EIR -184.401 372.802 376.129 373.135

fitted density function for all competing distributions, while the right panel displays
the empirical cumulative distribution function (CDF) versus the fitted CDF for all the
models.
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Figure 5. Histogram versus pdfs and fitted cdf versus emperical cdfs

We conducted a thorough comparison between our proposed model and both empir-
ical and theoretical cumulative distributions. Our examination revealed a remarkable
alignment between the empirical distribution and our model’s theoretical cumulative
distribution within the real dataset used for illustration. Furthermore, we assessed our
model, denoted as NTPD, against the theoretical cumulative distributions of other
models such as EMOE, EGIE, GIGE, and EIRD. Similarly, we compared the prob-
ability density function (PDF) of our model with those of competing models. The
results of our analysis unequivocally demonstrate that our proposed model outper-
forms all other competitive models in fitting the given dataset, as illustrated in Figure
5. This superiority is evident in the way our model closely tracks the observed data
points, thus providing a more accurate representation of the underlying distribution.
The alignment of our model’s theoretical cumulative distribution with the empirical
data underscores its robustness and suitability for modeling the specific dataset under
consideration.

5. Conclusion

In this research, we introduced a new distribution known as the Novel Three-Parameter
Distribution (NTPD). Our primary goal was to utilize this distribution for modeling
lifetime data, and our findings demonstrated its exceptional performance in the fields
of reliability and survival analysis. The NTPD is characterized by a positively skewed

10



A Novel Three-Parameter Distribution for lifetime data with application to COVID-19...  83ASIAN JOURNAL OF STATISTICS AND APPLICATIONS Arun Kumar Chaudhary a
& Lal Babu Sah b

and unimodal distribution. We conducted an in-depth examination of various statis-
tical properties associated with the NTPD model. This investigation revealed that
the model offers remarkable flexibility, accommodating both increasing and decreas-
ing hazard functions, as well as an inverted bathtub-shaped hazard function. These
insights were derived from a thorough graphical analysis of the Probability Density
Function (PDF) and Hazard Rate Function (HRF) of the NTPD.
To estimate the model’s parameters, we employed three distinct methods: Cramer’s-
von Mises Estimation (CVME), Least Squares Estimation (LSE), and Maximum Like-
lihood Estimation (MLE). These approaches provided valuable insights into the accu-
racy of our model’s parameter estimation.
Furthermore, we put the NTPD distribution to the test by applying it to real-world
COVID-19 second wave data from Nepal. The results of this application demonstrated
the superior fitting performance of the NTPD distribution when compared to several
other commonly used lifetime models. This underscores the potential of the NTPD as
a valuable tool in the analysis of lifetime data, particularly in the context of complex
and dynamic scenarios such as the COVID-19 pandemic.
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